570 research outputs found

    Detection and identification of sparse audio tampering using distributed source coding and compressive sensing techniques

    Get PDF
    In most practical applications, for the sake of information integrity not only it is useful to detect whether a multimedia content has been modified or not, but also to identify which kind of attack has been carried out. In the case of audio streams, for example, it may be useful to localize the tamper in the time and/or frequency domain. In this paper we devise a hash-based tampering detection and localization system exploiting compressive sensing principles. The multimedia content provider produces a small hash signature using a limited number of random projections of a time-frequency representation of the original audio stream. At the content user side, the hash signature is used to estimate the distortion between the original and the received stream and, provided that the tamper is sufficiently sparse or sparsifiable in some orthonormal basis expansion or redundant dictionary (e.g. DCT or wavelet), to identify the time-frequency portion of the stream that has been manipulated. In order to keep the hash length small, the algorithm exploits distributed source coding techniques

    Identification of Sparse Audio Tampering Using Distributed Source Coding and Compressive Sensing Techniques

    Get PDF
    In the past few years, a large amount of techniques have been proposed to identify whether a multimedia content has been illegally tampered or not. Nevertheless, very few efforts have been devoted to identifying which kind of attack has been carried out, especially due to the large data required for this task. We propose a novel hashing scheme which exploits the paradigms of compressive sensing and distributed source coding to generate a compact hash signature, and we apply it to the case of audio content protection. The audio content provider produces a small hash signature by computing a limited number of random projections of a perceptual, time-frequency representation of the original audio stream; the audio hash is given by the syndrome bits of an LDPC code applied to the projections. At the content user side, the hash is decoded using distributed source coding tools. If the tampering is sparsifiable or compressible in some orthonormal basis or redundant dictionary, it is possible to identify the time-frequency position of the attack, with a hash size as small as 200 bits/second; the bit saving obtained by introducing distributed source coding ranges between 20% to 70%

    Kolmogorov's law for two-dimensional electron-magnetohydrodynamic turbulence

    Full text link
    The analogue of the Kolmogorov's four-fifths law is derived for two-dimensional, homogeneous, isotropic EMHD turbulence in the energy cascade inertial range. Direct numerical simulations for the freely decaying case show that this relation holds true for different values of the adimensional electron inertial length scale, ded_e. The energy spectrum is found to be close to the expected Kolmogorov spectrum.Comment: 9 pages RevTeX, 3 PostScript figure

    On supporting university communities in indoor wayfinding: An inclusive design approach

    Get PDF
    Mobility can be defined as the ability of people to move, live and interact with the space. In this context, indoor mobility, in terms of indoor localization and wayfinding, is a relevant topic due to the challenges it presents, in comparison with outdoor mobility, where GPS is hardly exploited. Knowing how to move in an indoor environment can be crucial for people with disabilities, and in particular for blind users, but it can provide several advantages also to any person who is moving in an unfamiliar place. Following this line of thought, we employed an inclusive by design approach to implement and deploy a system that comprises an Internet of Things infrastructure and an accessible mobile application to provide wayfinding functions, targeting the University community. As a real word case study, we considered the University of Bologna, designing a system able to be deployed in buildings with different configurations and settings, considering also historical buildings. The final system has been evaluated in three different scenarios, considering three different target audiences (18 users in total): i. students with disabilities (i.e., visual and mobility impairments); ii. campus students; and iii. visitors and tourists. Results reveal that all the participants enjoyed the provided functions and the indoor localization strategy was fine enough to provide a good wayfinding experience

    On combining Big Data and machine learning to support eco-driving behaviours

    Get PDF
    A conscious use of the battery is one of the key elements to consider while driving an electric vehicle. Hence, supporting the drivers, with information about it, can be strategic in letting them drive in a better way, with the purpose of optimizing the energy consumption. In the context of electric vehicles, equipped with regenerative brakes, the driver\u2019s braking style can make a significant difference. In this paper, we propose an approach which is based on the combination of big data and machine learning techniques, with the aim of enhancing the driver\u2019s braking style through visual elements (displayed in the vehicle dashboard, as a Human\u2013Machine Interface), actuating eco-driving behaviours. We have designed and developed a system prototype, by exploiting big data coming from an electric vehicle and a machine learning algorithm. Then, we have conducted a set of tests, with simulated and real data, and here we discuss the results we have obtained that can open interesting discussions about the use of big data, together with machine learning, so as to improve drivers\u2019 awareness of eco-behaviours

    Towards an ab initio description of the optical spectra of light-harvesting antennae: application to the CP29 complex of photosystem II.

    Get PDF
    Only going beyond the static crystal picture through molecular dynamics simulations can a realistic excitonic picture of the light-harvesting complex CP29 be obtained using a multiscale polarizable QM/MM approach
    corecore